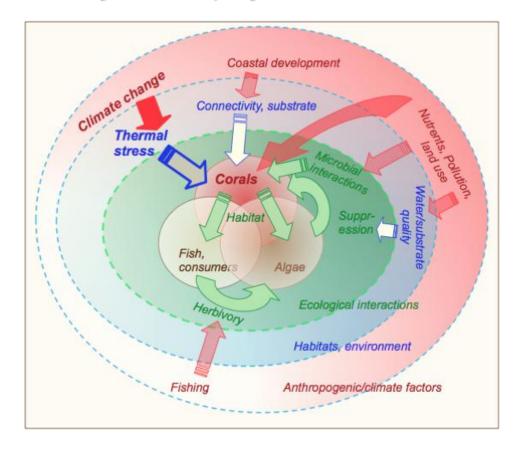
Measuring Resilience for Management

David Obura

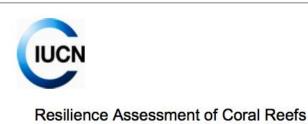
CORDIO East Africa, <u>www.cordioea.org</u>

IUCN working group on Climate Change and Coral Reefs (CCCR)


<u>www.iucn.org/cccr</u>

Ameer Abdulla Senior Advisor, Marine Biodiversity & Conservation Science IUCN Climate Change and Coral Reefs (CCCR) www.iucn.org/cccr

The challenge, is how do you go from this ...


To this ...

IUCN-CCCR (Climate Change and Coral Reefs working group)

www.iucn.org/cccr

Panid accessment protocol for coral reafs, focusing on corr

Rapid assessment protocol for coral reefs, focusing on coral bleaching and thermal stress

David Obura and Gabriel Grimsditch

David Obura, Gabriel Grimsditch, with

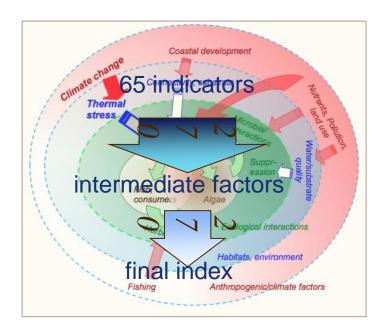
Paul Marshall, Naneng Setiasih, Alison Green, Ameer Abdulla, and

Greta Aeby, Lizzie McLeod, David Bellwood, Haji Machano, Robert Steneck, Jerker Tamelander, Jeffrey Maynard

- 1 Benthic cover
- 2 Coral community structure relative abundance of genera.
- 3 Coral size class distributions
- 4 Coral condition, including bleaching, disease, other conditions and mortality
- 5 Fish functional groups (herbivores, predators)
- 6 Resilience indicators for site resistance and resilience

```
Resilience variable
Hard Coral
Soft Coral
Recruitment
Fragmentation
Dominant size class
Largest corals (3)
Obligate feeders
Branching residents
Herbivores
Excavators
Grazers/ Browzers
Piscivores
Rubble
Consolidation
Top. Compl. - micro
Top. Compl. - macro
Sediment texture
Sediment layer
Water quality
Self-seeding.
Local seeding (10 km)
Distant seeding (100)
Currents
Dispersal barrier
Fleshy Algae
Fleshy Algae-height
Turf Algae
Inverts-other
Competitors
Bioeroders (external)
Bioeroders (internal)
Corallivores (negative)
Bleaching
Mortality-recent
Coral disease
Mortality-old
Recovery-old
Temperature ("C on Comment):
Currents.
Wave energy/ exposure
Deep water (30-50m)
Depth of reef base (m on Comment)
Depth (m on Comment)
Visibility (m on Comment):
Compass direction/ aspect
Slope (degrees)
Physical shading
Canopy corals
Exposed low tide
Ponding/pooling
Temperature variability
Proportion high susceptibility corals
Survival of past bleaching
Nutrient input
Pollution (chemical)
Pollution (solid):
Turbidity/Sedimentation
Physical damage
Fishing pressure
Destructive fishing
Dispersal barrier
Biodiversity
Resources
Environmental quality
```

CCA


Factor 1-Coral 2-General Interactions 3-Fish - Herbivores 4-Fish - Piscivores 5-Substrate quality 6-Water quality 7-Connectivity 8-Algae 9-Negative factors 10-Past Impacts 11-Cooling 12-Screening 13-Extremes/ variability 14-Coral Susceptibility 15-Anthro stress 16-Management

Resilience/recovery

Resistance to bleaching

Management

Resilience indicators

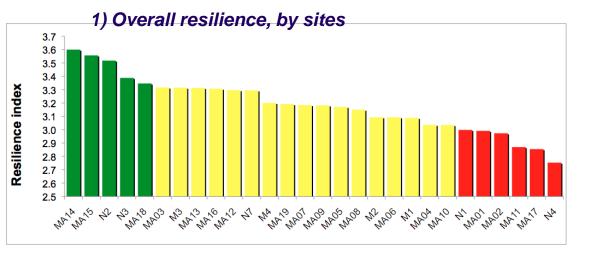
Measuring/deriving indicators:

- applicable as an add-on to various different monitoring approaches - GCRMN, Reef Check, etc.
- •semi-quantitative 5 point scale

1 - low 3-int 5 - high

Sites

Site		Country	Mnth/Yr*	Region
1.	Aceh/Bali	Indonesia	Mar 09	Asia-Pacific (A-P)
2.	Raja Ampat	Indonesia	March 09	Asia-Pacific (A-P)
3.	Bocas del Toro	Panama	Apr 09	Caribbean
4.	Bonaire	Netherlands Antilles	May 09	Caribbean
5.	Southern Line Islands	Kiribati	May 09	Central Pacific
6.	Phoenix Islands	Kiribati	Sep 09	Central Pacific
7.	Djibouti	Djibouti	Jan 10	NIO/Gulf Aden
8.	Northern Red Sea (3 areas)	Saudi Arabia	Sep 07 -May 09	Red Sea
9.	Egyptian mainland	Egypt	Dec 09-Aug 10	Red Sea
10.	. Kiunga Marine Reserve	Kenya	Nov 08	WIO
	. South coast	Kenya	Feb 09	WIO
12.	. Andavadoaka	Madagascar	Apr 09	WIO
13.	. Pemba Island, west coast	Tanzania	Feb 09	WIO
14.	. Aldabra, D'Arros	Seychelles	Apr 08	WIO
15.	. Farquhar	Seychelles	Feb 09	WIO
16.	Nosy Hara, Diego Suarez	Madagascar	Nov 08	WIO
17.	. Ambodivahibe	Madagascar	Dec 08	WIO
18.	. Amirantes (Alphonse, Desroches)	Seychelles	Apr 08	WIO
19.	. Maldives	Maldives	May 08	WIO
20.	. Comoros	Comoros	Feb 10	WIO
21.	. Digeo - Vohemar	NE Madagascar	Mar 10	WIO
	. St. Brandons Island	Mauritius	Apr 10	WIO
23.	. Mayotte	Mayotte	May 10	WIO
	. Pemba/ Quirimbass	Mozambique	Jun 10	WIO
25.	. Mafia-Songo Songo	Tanzania	Nov 07	WO


1st phase, 2008-11

- method development
- •field work

2nd phase, 2011+

- various initiatives/sources of funding
- •TNC analysis/assessment workshop, Indonesia & CORDIO/WIO analysis and reporting
- •UNEP/IUCN/MEDTL Marine Spatial Planning/resilience integration
- •ITMEMS 4 managing for reef resilience
- •ICRS 12 mini-symposium

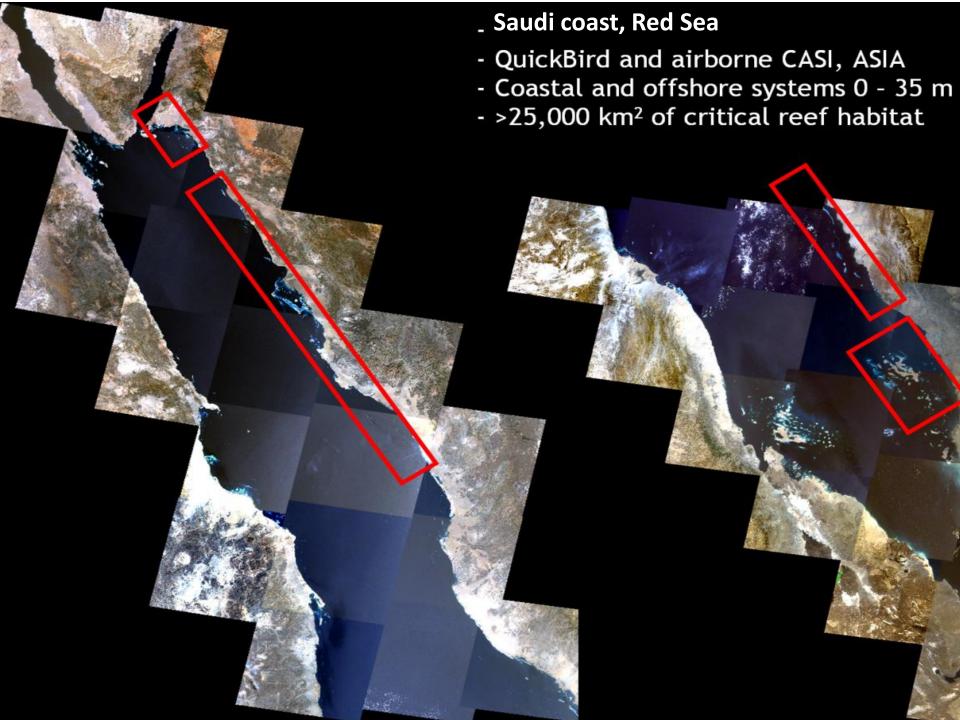
Resilience assessment

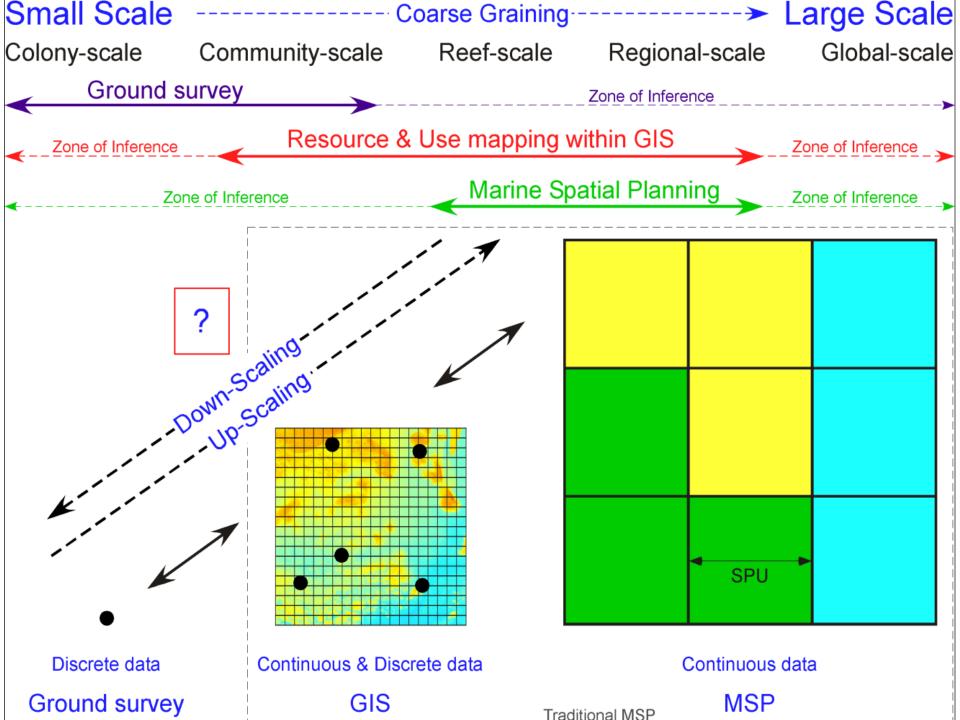
			nprov	tes, I ved r	nana	agen				2.r 3.i	eco/	/ery/ oved	reha sub	bilita strat	emen ation e qu	fron		st im	pact	S	N N N N	MA06 M1 MA04 MA10 MA10 MA01			3.09 3.09 3.04 3.04 3.00 2.99	(1 2 2 2 1 1	.84 .43 .03 .44 .88)
3) Guidir	ng m	nana	igei	nen	t at	site	e le	vels	;												N N	MA02 MA11 MA17 M4			2.97 2.87 2.85 2.75		1	.44 .41 .56 .84	
Factors	Factor	MA14	MA15	N2	N3	MA18	MA03	M3	MA13	MA16	MA12	N7	M4	MA19	MA07	MA09	MA05	MA08	M2	MAGE	M1	MA04	MA10	N1	MA01	MA02	MA11	MA17	N4
	Overal	reserv	eserv	open	open	open	open	eserv	open	eserv	open	open	eserv	eserv	open	open	open	open	eserve	open	eserve	open	open	open	open	open	open	open	oper
1-Coral	2.92	3.14	3.14	3.00	3,00	3.14	3.29	3.57	3,14	3.29	2.86	3.29	2.57	2.57	2.86	2.43	3.57	2.86	2.86	JI-29	2.86	2.86	2.71	2.14	3.29	2.71	2.86	2.57	1.88
2-Interactions	2.11	3.00	2.50	3.50	3.50	3.00	2.50	2.50	2.00	2.50	2400	2.50	2.00	2.00	12.50	2.00	2.00	L 80	2.50	1-00	200	2.00		2.50	2.50	2.00	220	1.00	1.00
3-Herbivores	11.77	3.00	2.50	2.75	2.00	2.50	2.73	1.75	175	2.50	13.3	1,78	2.00	1.50	1.50	2.23	17.0	1 10		1.00	100	2.00	11.5	11/19	1,00	1.00	200	100	
4-Piscivores	11.79	3.00	3.00	3.00	2 00	3.00	0.00	F2.60	2 60	72.40	F2 60	72.80	3.00	22.20	F2 20	2 00	7 20	73.20	-	71.00	F2 60	72.00	1.20	P2 60	1,000	N 20	72.60	2.60	9.90
5-Cooling	2.89	3.40	3.40	2.60	3.00	3.40	17	2.50	2.00	3.90	3.33	2.60	3.17	2.02	3,20	3.00	3.20	3.20	2.00	3.00	2,60	2.60	0.20	2.00	2.17	2.50	2.60	2.00	2.50
6-Screening 7-Extremes	2.82	3.00	2.0	2.07	3.00	3.00		2.00	3.00	3.00	-0.00	2.07	3.17.	2.03	3.00	3.00	7 000	3.00	200	3.00	2.50	3.00	1.07	2.03	3.00	3.30	2.50	3.00	2.50
8-Substrate	2.06	74.33	Page 1	3.67	73.50	F4.00	1 63	3.33	3.33	4.17	2 33	3.50	1 83	3.00	3.00	2.50	3.50	2.83	200	3.67	2.83	3.00	100	600	2.83	2.50	200	2.83	3.00
9-Connect	3.08	4.00	14.00	4.00	4.00	4.00	100	4.00	4.00	4.00	4.00	3.80	4.00	4.00	4.00	4.00	4.00	4.00	200 10	4.00	4 00	4.00	12 FEE	3.80	4.00	4.00	4.00	4.00	3.80
10-Algae	3.73	4.00	73.6	5.00	4.50	4.00	14.33	4.00	4.00	4.00	3.67	3.50	3.50	3.33	4.00	3.67	4.33	3.67	3.50	3.67	3.50	3.33	1.33	4.00	3.33	3.33	3.33	3.33	2.50
11-Neg Assoc	3.24	3.00	3.4	3.00	2.60	2.60	1.00	3.00	3.60	2.80	3.60	3.60	3.00	3.00	3.40	3.40	3.80	3.60	3.00	3.60	3,40	3.40	8,40	2.80	3.60	3.20	3.20	2.80	2.80
12-Impacts	2.62	2.20	2.4	3.00	3.80	1.80	£00	3.80	2,60	2 20	2.80	3.60	3.80	2.40	2.60	2.20	2.20	Y 80	3.4	1.60	2.60	2.20	11.80	3.80	2.40	2.40	2.60	2.60	2.60
13-Anthro stre	4.20	5.00	5.00	4.38	4.25	4.75	4.88	4.00	4.50	4.75	4.50	475	3.88	4.38	4.38	440	4.88	4.88	18	4.38	463		5.00	3.75	2.75	2.75	2.63	3.25	3.13
14-Manageme	1.40	3.67	3.67	1.00	1.00	1,00	1,00	2.33	1.00	1.00	1.00	1,00	2.33	3.67	1.00	1.00	1,00	1.00	233	1.00	2.33	1.00	1,00	1.00	1.00	1,00	1.00	1.00	1.00
Site			1																										
Overall	3.18	3.60	3.56	152	3.39	3.35	3.32	3.31	3.31	3.31	3.30	3.29	3.20	3.19	3.18	3.18	3.17	3,15	3.09	1.09	3.09	3.0	3.04	3.00	2.99	2.97	2.57	2.85	2.75
Management	2.31	3.48	3.54	2.78	2.31	2.71	2.41	2.52	2.31	2.56	2.31	2.38	2.80	2.64	2.22	2.34	2.16	2.41	2.30	11.84	2.43	2//3	2.44	1.88	1,44	1.44	1,61	1.56	1.84

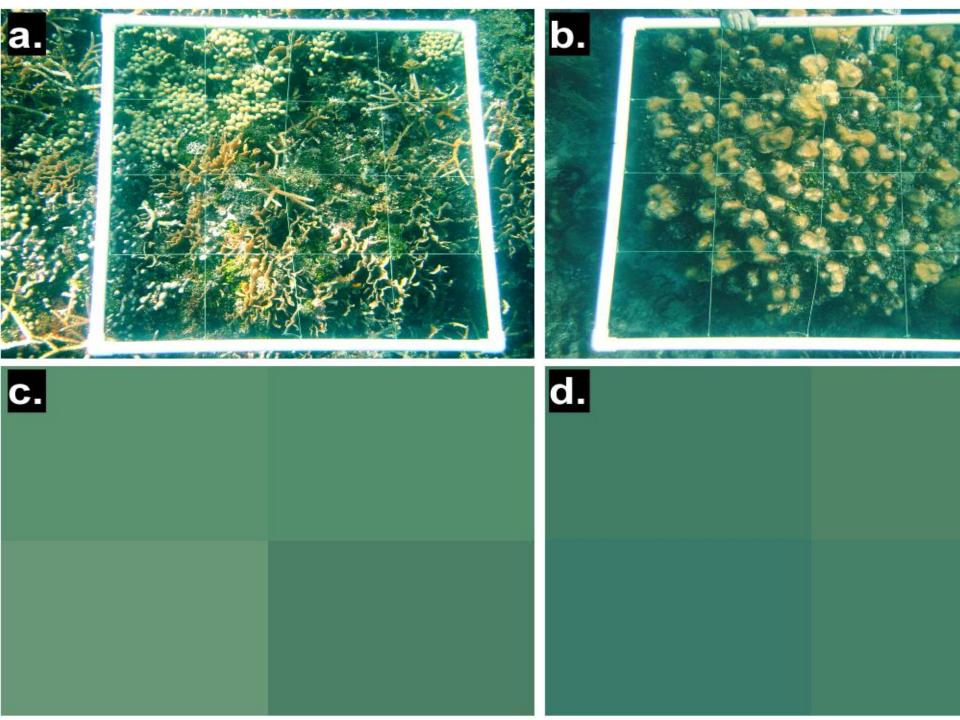
'Bad' sites, responses:

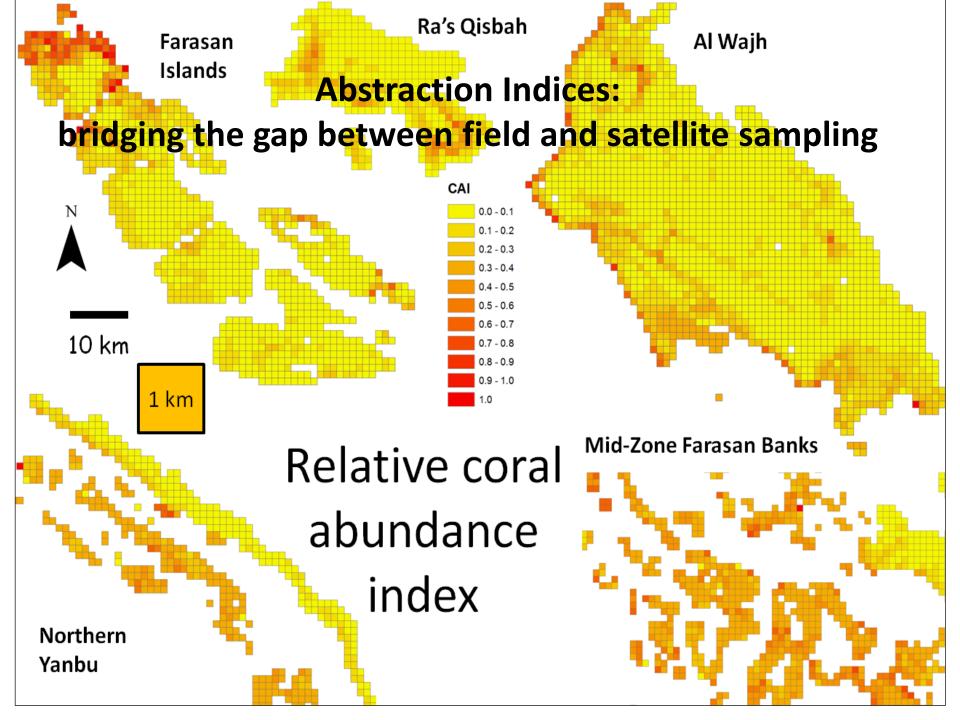
2) Overall resilience vs. factors directly affected by management

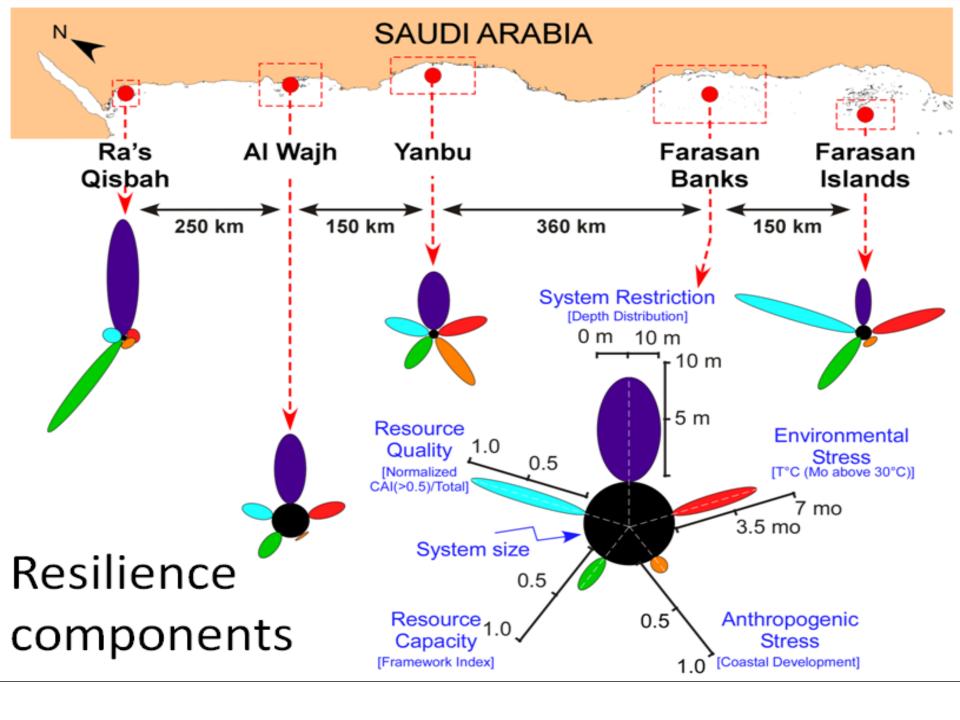
	Overall	Management
MA14	3.60	3.48
MA15	3.56	3.54
N2	3.52	2.78
N3	3.39	2.31
MA18	3.35	2.81
MA03	3.32	2.41
M3	3.31	2.52
MA13	3.31	2.31
MA16	3.31	2.56
MA12	3.30	2.31
N7	3.29	2.38
M4	3.20	2.80
MA19	3.19	2.64
MA07	3.18	2.22
MA09	3.18	2.34
MA05	3.17	2.16
MA08	3.15	2.41
M2	3.09	2.30
MA06	3.09	1.84
M1	3.09	2.43
MA04	3.04	2.03
MA10	3.04	2.44
N1	3.00	1.88
MA01	2.99	1.44
MA02	2.97	1.44
MA11	2.87	1.41
MA17	2.85	1.56
N4	2.75	1.84






Towards Integrating Reef Resilience into Marine Spatial Planning


Ameer Abdulla¹³, Edward Game⁴, Gabriel Grimsditch³⁷, David Obura²³, Sam Purkis⁶, Anthony Rouphael¹, Gwilym Rowlands⁶, Ole Vestergard⁷,


¹Marine Biodiversity and Conservation Science Group ²Coastal Ocean Research and Development in the Indian Ocean ³IUCN Climate Change and Coral Reefs Working Group ⁴The Nature Conservancy and University of Queensland ⁵Great Barrier Reef Marine Park Authority ⁶ National Coral Reef Institute, Florida ⁷UNEP Marine and Coastal Division

1st phase, 2008-11

- method development
- •field work

2nd phase, 2011+

- various initiatives/sources of funding
- TC analysis/assessment workshop, Indonesia &
- **CORDIO/WIO** analysis and reporting
- NEP/IUCN/MEDTL Marine Spatial Planning/resilience integration
- MEMS 4 managing for reef resilience
- •ICRS 12 mini-symposium

Integration with GCRMN

- additional indicators and context for monitoring data
- •iconic/observatory sites research in different areas of resilience