

Coastal Pollution Toolkit

Dr. Amelia Wenger

Water Pollution Program Lead, Wildlife Conservation Society

Senior Research Fellow, University of Queensland

3. Getting started: initial assessment

The initial assessment can be broken down into three categories

Who

Who are the key communities and organizations involved?

What

What are the sources of water pollution, and are there any existing policies, legislation, or regulations in place to manage it?

Where

Where are the pollution generating activities occurring, and where in the coastal and marine environment are pollutants ending up?

Partner, community, & stakeholder mapping should focus on identifying four main groups

- The people
 Responsible for the pollution.
- The people
 Affected by pollution.
- The people
 Able to mandate and enforce change.
- The people
 Responsible for pollution management.

Who

The initial assessment can be quite short or more detailed, depending on information needs, and it can include one or a combination of the following components

Desktop assessment – Mapping & collecting existing data

- Land-use and land cover mapping.
- Collation of existing data, such as government reports, scientific publications, research studies, etc.
- Wastewater and stormwater systems and infrastructure mapping.
- Regulatory, policy, and management assessment, and gap analysis.
- Partner, community, and other stakeholder identification.

Physical inspection

- Examination of infrastructure, e.g., presence of leaking pipes.
- Observations of water and coastal areas for signs of pollution.
- Locating main sources of pollution.

Formal and informal discussions with key informants & community members

- Are there concerns regarding pollution?
- Are there practices that could cause pollution?

What & Where

5. Deciding on your approach for data collection

Direct, in-situ water quality measurements, observations, & samples

Ecological monitoring of bioindicators

Indigenous & local knowledge

Quantitative modeling

Biotic and abiotic sampling for further assessments

Remote sensing with satellite data

5. Deciding on your approach for data collection

1. **i**

Information needs

2.

Trade-offs among different approaches 3.

Project logistics & constraints

6. Collection of in-situ information

L.

A selection of the most appropriate parameters that could be measured to help answer your objectives/questions.

2.

The methods available to you based on your objectives, moderated by logistic constraints & available resources.

Aluminum Arsenic Cadmium • Chromium Copper • Iron Mercury Nickel • Lead • Zinc **Pesticides** • DDT Glyphosate Atrazine Chlorpyrifos

Heavy metals

Hydrocarbons

 Polycyclic aromatic hydrocarbons

Polychlorinated

biphenyls

Dioxins

- Total recoverable hydrocarbons
- Total petroleum hydrocarbons
 - <u>B</u>.

7/8/2

Microbial organisms

- Enterococci (saltwater)
- Total coliforms
- Faecal coliforms
- Escherichia coli (E. coli) (freshwater)
- Faecal streptococci
- Bacteriophages
- · Viruses, e.g., pepper mild mottle virus

Pharmaceutical & personal care products (PPCP)

- Sucralose
 - Triclosan

Caffeine

- Phthalates
- Diclofenac
- Carbemezapine
- Sulfamethazole
- Fluoroquinolones
- PFAS

Per- & polyfluoroalkyl substances (PFAS)

 Perfluorononanoic acid

Nutrients

- Total nitrogen (the sum of all nitrogen forms)
- Nitrate
- Nitrite
- Ammonium
- Ammonia
- Inorganic nitrogen
- Total kjeldahl nitrogen
- Nitrogen isotopes - δ^{15} N
- Total phosphorus
- Phosphate
- Chlorophyll a
- Dissolved oxygen

Organic matter

 Biochemical oxygen demand

ن

- Chemical oxygen demand
- Dissolved oxygen

Ī

Organoha<u>lide &</u>

organometallic

compounds, &

mineral acids

Perchloric acid

Sediments

- Total suspended solids
- Water clarity as measured by a Secchi disk
- Turbidity indicator of suspended solids
- Total dissolved solids

Naga Naga

Agriculture

Deforestation & Land-Clearing

Landfills

Livestock & Invasive Mammals

Military Activities

Plastics

Microplastic

abundance/

diphenyl

Phthalates

Nonylphenols

Bisphenol A

concentration

• Polybrominated

Ports, Marinas, & Ocean-Based Industries

Aquaculture

Mining

Urbanization & Industrial Wastewater

6. Collection of in-situ information

- 1 Manual water sampling for laboratory analysis
- 2 Automated water sampling for laboratory analysis
- Automated measurements with a data logger/sensor

- 4 Passive sampling
- Manual water sampling and analysis with a water quality testing kit
- 6 Manual measurements
 with a handheld analog or
 digital instrument

- Site selection & sampling frequency
- Quality control & data management
- Analysis & communication of data
- Examples of common questions & approaches
- Frequently asked questions

WCS.ORG/OUR-WORK/SPECIES/CORAL/WATER-POLLUTION